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SUMMARY 

A finite element method for the analysis of nearshore current, which is one of the principal currents in 
coastal seas, is presented in this paper. Because the nearshore current is induced by the variable 
distribution of the surface waves, it is necessary to analyse two main characteristics of the wave, i.e. 
direction and height. The current can be computed using the resulting wave characteristics. The present 
method makes it possible to employ procedures for which the same methods of solution are applicable 
for all basic equations of wave direction, height and current flow. The linear interpolation function is 
used for the discretization of spatial variables and a selective lumping two step explicit scheme is 
employed for the numerical integration in time. The numerical solutions obtained are compared with 
analytical, experimental and observed ones. From these comparative studies, it is concluded that the 
present finite element method provide a useful tool for the analysis of nearshore current. 
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INTRODUCTION 

In a coastal sea near a beach, the variation of the surface wave distribution becomes 
extraordinally complicated and irregularly variable. Moreover, waves can occur which break 
near a coast after having passed through the breaking point. The surface waves in coastal 
seas generate a considerable high velocity current in a direction toward, outward or 
alongside a beach. The current induced by the variable distribution of the waves is generally 
referred to as the nearshore current.'" The velocity of the nearshore current is sometimes 
almost the same order as those of tidal current, wind drift current and so on. In a coastal sea 
near a beach, where the water depth becomes shallower, the sea bottom topography and 
coastal geometry greatly affect the current flow. Therefore, it is quite necessary and 
important to develop a flexible finite element method, to consider the bottom topography 
and coastal geometry. 

The finite element method, in which velocity and water elevation are taken as the field 
variables to solve steady flow, was presented by Skovgaard and J o n ~ s o n . ~  In their analysis, 
the wave distribution was determined according to the conventional formulation of conserva- 
tion of waves. A linear interpolation function is used for velocity and a quadratic interpola- 
tion function for water elevation. Liu and Lemon* discussed the finite element method 
based on the stream function method dealing with wave diffraction by the ray method. The 
finite element analysis based on the isoparametric element is investigated by Bettess et al.,9 

* This invited paper is an extended and refereed version of one presented at the Fourth International Symposium 
on Finite Elements in Flow Problems held in Tokyo, Japan, July 26-29, 1982. 
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who employed the Helmholz equation to  determine the wave field. Wu and Liul0 presented 
the steady flow analysis considering eddy viscosity and bottom friction by the conventional 
direct method. Kawahara et d.,” and Kawahara and Takagi” published the finite element 
method based on  the stream function formulation. The wave angle is computed by a 
non-linear incremental iteration method. Kawahara et all3 discussed the method based on 
the conservations of wave number and wave energy, the equation of motion and the 
equation of continuity. However, the coupling effects are ignored. 

This paper presents the finite element method for the determination of surface wave 
direction, wave height and current flow. Contrary to the method previously published, the 
present method employs the same finite element procedures for all equations of wave and 
current. The conservation equations of wave number and energy are used to determine the 
wave. For the current flow, equations of motion and continuity, including radiation stress, 
are employed. It can be made possible to transform all the basic equations to first order 
differential equations. This enables the time marching finite element method, especially the 
explicit method, to be effectively used. Because the basic equations are non-linear and field 
variables are coupled to each other, iterative computations are necessary to solve these 
equations. For this purpose, the following procedures are used. At first, assuming the flow 
field, the wave direction is solved. Using the flow and the computed wave direction, the wave 
height is determined. Then, employing the resulting wave direction and height, the current 
flow can be obtained. The iteration cycle is repeated until a steady current flow is 
determined. 

Following the standard Galerkin finite element procedure the weighted residual equation 
is derived for all basic equations. A linear polynomial function based on a three node 
triangular finite element is employed for the interpolation of wave number, wave height, 
current flow and water elevation. The fact that the same linear interpolation function can be 
used for all field variables greatly reduces the computational effort compared with the 
conventional analysis. In recent papers, Kawahara et all4 have shown that the selective 
lumping two step explicit method is useful for the computation of transient shallow water 
flow. Several numerical examples have been carried out to illustrate the adaptability of the 
present finite element method. 

As a numerical test example, the wave direction, wave height, and current flow are 
compared with the analytical solution ignoring the coupling effect. Numerical results are 
compared with the experimental results obtained by Mizuguchi et al.ls,lfi All the comparisons 
are in extremely good agreement. Numerical computations have been carried out for the 
coastal current at the Fujisawa Coast. The rip current zones computed are closely related to 
the zone obtained by observation.” It is concluded that the finite element method presented 
in this paper is a successful tool for the analysis of transient nearshore current flow. 

BASIC EQUATIONS 

A Cartesian co-ordinate system is introduced in which the x-axis is placed normal to the 
coastline and the y-axis is placed parallel to it as shown in Figure 1. The nearshore current is 
that which is induced by the variable distribution of wave energy around the surf zone near a 
sea coast. Thus, it is strictly necessary to describe the surface wave distribution. In this paper, 
a wave theory which is based on trains of long, smooth, regular waves is employed, although 
actual sea waves are frequently short-ceased, random and irregular. These sorts of irregular- 
ity can be modelled by the superposition of regular waves with various frequencies. The 
waves are specified by two main characteristic quantities, wave direction and wave height. 



NEARSHORE CURRENT 73 
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Figure 1. Co-ordinate system 

These are actually described by the equations of conservation. The nearshore current is 
expressed by the conservations of momentum and continuity, postulating the concept of 
radiation stress. l6 The fluid is assumed to be transient, incompressible and turbulent. The 
vertical component of the current is neglected and the mass current is assumed to be 
constant over the depth. Coriolis force and wind action are ignored. In this paper, all 
equations are expressed using the indicia1 notation and the usual summation convention with 
repeated indices. 

Wave direction 

The instantaneous wave form 2 is expressed in general in the form: 

2 = A exp ( ix)  (1) 

where A is the local amplitude which determines the wave height and x is the phase 
function, which is related to the wave direction. The imaginary unit is denoted by i. The 
functions A and x are slowly varying functions of position and time. Wavenumber k and 
radian frequency n can be defined in terms of the phase function. 

ki = X,i 

ax 
at 

n =  -- 

k = J(kk) (4) 

where ki denotes the components of wavenumber which are related to the wave direction by 

(51, (6) 

where 8 is the wave direction angle as shown in Figure 1. Combining equations (2) and (3), 

k, = k cos 8, k, = k sin 8 
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the kinematical conservation equation can be derived as follows. 

dk ,  
at 
-+ n,i = 0 (7) 

considering the interaction between surface wave and current velocity ui, the radian 
frequency n is given by 

n = a + k i u ,  (8) 

where n is called the observed frequency and u is the intrinsic frequency. The frequency a is 
derived from the dispersion relation: 

u2= gk tanh k(h+Z;)  (9) 

where 5 denotes the water elevation, g and h are gravity acceleration and water depth, 
respectively. From equations (7)  and (8), the following is obtained: 

aki 
-+(a+ kjU,),i=O 
at 

Because cr is a function of wavenumber k and water depth h, equation (10) can be 
reformulated as follows. 

From equation (2) ,  the irrotational condition on the wavenumber can be written as: 

~ . . k .  LJ 1.1 = O  (12) 
where E , ~  is the Eddington's epsilon function. Introducing equation (9) into equation ( l l ) ,  
using equation (12) and rearranging the terms, the kinematical conservation equation can be 
written in the following form. 

aki  -+ Caki,j + fh,i + kjq j  + ujki,j = 0 
at  

where C,  is the group velocity, 

in which C is the wave velocity: 

C = J[  (f) tanh k(h + [)I 
and f is the gradient of frequency, which is expressed as follows: 

au g k 2  
ah  2a 

f=-=- sech2 k ( h  + 5) 

Using the resulting k, the wave angle 8 can be calculated from equations (5) and (6) 



NEARSHORE CURRENT 75 

As the boundary condition, the wave angle is described on the ocean-side boundary using 
the wave direction of the incident wave, 

Wave height 

which is introduced by Longuet-Higgins and 
energy can be expressed by 

The wave height distribution can be determined by the conservation law of wave energy, 
An equation for the balance of total 

where Eli and p express total velocity and pressure, and p is the density of water. Assuming 
that the total velocity consists of current velocity y and wave velocity u:, equation (18) can 
be reformulated to lead to the conservation equation of wave energy. 

dE -+ [E(C,i + at + Sijy,j = 0 

where E denotes wave energy per unit surface area, 

E = &pgH2 

in which H represents wave height, being the ensemble average of wave height. Radiation 
stress is denoted by Sii, which is defined as the excess momentum of the wave velocity and 
pressure, and will be expressed in equation (27). 

The wave breaking height is determined by the following empirical equation, 

H b  = rh, (21) 

where f&, and hb represent wave breaking height and the water depth at which wave 
breaking occurs, respectively, and y is an empirical constant lying between 0.6 and 1.0. On 
the shore zone between the beach and the breaking point, the broken wave height is 
assumed to be proportional to the water depth as: 

H =  yh (22) 

As the boundary condition, the wave height is specified on the ocean-side boundary using 
the data of the incident wave. 

Nearshore current 

The nearshore current is normally induced by the unbalanced distribution of wave 
direction and energy. The current can be described by the conservation equations of 
momentum and continuity, vertically integrated assuming a hydrostatic pressure distribution, 
as 

where 6 is vertical velocity, 7i means viscosity and friction terms and 6, is the delta function. 
Equations (23) and (24) lead to the conservation equations in which the unknown variables 
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are mean velocity y and water elevation 5. 

where radiation stress Sii is expressed as 

in which u: is the velocity fluctuation due to the wave, p is the pressure including fluctuation 
and an overbar represents an ensemble average. The normal wave potential has the form: 

nA cosh k (z + 5)  
k sinh k ( h  + 5) 4=- sin ( k i q  - nt) 

Using this, the fluctuations of wave height C', velocity u:, and velocity in the direction of 
water depth w' can be derived in the form: 

5' = A cos (kq - nt) (29) 

nA cosh k ( z  + h )  ki 
sinh k ( h  + 5) u; = (J cos (kq - nt) 

n A  sinh k ( z  + h )  
sinh k ( h + 5 )  

w' = sin (k ,q  - nt) 

Introducing equations (29)-(31) into equation (27) and rearranging the terms, the following 
form of the radiation stress can be derived: 

where 
ki 1. =- 

' k  

Following Longuet-Higginsl4 the friction coefficient fc is expressed by 

2CfH 
f c  = T sinh k ( h  + 5) 

(33) 

(34) 

(35) 

in which C, is the non-dimensional friction coefficient and T is the wave period. For the 
turbulent viscosity, an empirical constant or the following equation is used. 

At = p h  (36) 
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where p is a constant. As the boundary condition, velocity, water elevation and surface flux 
are specified on the appropriate boundaries as follows. 

on S, u. = % 

c = R  on S2 

-yi = + y , J n j  = qi, on S,  

I )  

where nj denotes the components of the unit normals to the boundary and the circumflex 
denotes the prescribed value on the boundary. 

FINITE ELEMENT METHOD 

Basic equations for the analysis of the nearshore current are described in equations (13), 
(19), (25) and (26). It is notable that all these basic equations have the forms of the first 
order time dependent partial differential equation. For the discretization of the spatial 
unknown variables, the standard Galerkin finite element method has been successfully 
applied. The formulations are almost the same for all equations, i.e. those of wavenumber, 
wave energy and current flow. Assume that the flow field to be analysed is divided into small 
regions called finite elements. For the interpolation function, a linear polynomial function is 
used based on a triangular finite element. 

For the computation of wave direction, equation (13) is employed. Multiplying both sides 
of equation (13) by weighting function kT and integrating over the domain V, the weighted 
residual equation can be derived in the form: 

( k :  2) dV+ Jv (kTC,ki,j) dV+ 5 (kTfh, i )  d V  
V 

+ (kTkiq , i )  d V +  (kTy.ki,i) d V =  0 (40) 

The wavenumber ki and its corresponding weighting function are interpolated in each finite 
element as follows. 

ki = <P,kai, kT = @,kzi (41), (42) 

where @a denotes the interpolation function, and kai and k z i  are nodal values of the 
wavenumber and the corresponding weighting function respectively. Water depth h, group 
velocity C,, current velocity and gradient of frequency f are also interpolated as: 

where h,, Cgai, uai, f a  are the nodal values of the corresponding variables at the cwth node of 
each finite element. A standard linear interpolation function based on a three node 
triangular finite element is used. The Galerkin procedure leads, upon substituting equations 
(41)-(46) into equation (40), to the following finite element equation: 

M x p k p i  + Kapyjcgpjkyi + Carpyifphy + C=pyikBj%j + Kap-yjugjkyi = 0 (47) 
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For the computation of wave height, equation (19) is employed. Multiplying both sides of 
equation (19) by weighting function E* and integrating over the domain V, the weighted 
residual equation can be derived in the form: 

(E* g) d V +  jv {E*[E(Cgi + U,)],,} d V +  (E*Sijzqi) d V =  0 I, 
The wave energy E and its corresponding weighting function E* are interpolated in each 
finite element as follows: 

E = @.,E,, E* = @,EZ (49), (50) 

where @, denotes the interpolation function, and E, and EZ are nodal values of wave 
energy and the corresponding weighting function, respectively. Radiation stress Sij is also 
interpolated as: 

s, = @,S,, ( 5  1) 

where Saii are the nodal values of the radiation stress at a t h  node of each finite element. The 
Galerkin procedure leads, upon substituting equations (44), (45), (49)-(5 1) into equation 
(48), to the following finite element equation. 

For the computation of nearshore current, equations (25) and (26) are employed. Multi- 
plying both sides of equations (25) and (26) by weighting functions uT and 5" and integrating 
over the domain V, the weighted residua1 equations can be derived in the form: 

Current velocity components y, water elevation 5 and their corresponding weighting 
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functions uT and 5* are interpolated in each finite element as follows. 

y = aauair uT =aa& 
5 =aa&, l* = aa5: 

where @a denotes the interpolation function. The radiation stress and bottom friction terms 
are interpolated as: 

where Niia and F, are the nodal values of the corresponding variables at the a t h  node of 
each finite element. The Galerkin procedures lead, upon substituting equations (43), (55)- 
(60) into equations (53) and (54), to the following finite element equations. 

MaeuBi + &yjuejLqi + Haei5B + QdjNBi i  + M&pi + Sai~iu~i  = 0 (61) 

(62) + Baeiy(h, + c~)u, + Cahi(hp + b ) U y i  = 0 
where 

Haei = I, (aaae.i) dv 

Saigj = Jv Al(*a.k@@,k)& d V +  J A(@a.i@p,j) d V  
V 

Superposing equations (47), (52), (61) and (62) at all nodal points in the whole flow field, the 
final finite element equation can be derived as a non-linear first order simultaneous 
differential equation system. The finite element equations in the whole flow field can be 
written in the same form as in equations (47), (52), (61) and (62). 

NUMERICAL INTEGRATION IN TIME 

To solve the discretized finite element equations with appropriate initial and boundary 
conditions, a numerical integration scheme needs to introduced. For this purpose, the two 
step explicit scheme14 is employed in this paper. The total time to be analysed is divided into 
a number of discrete time points, one of which is denoted by nth time point. The short time 
interval between the nth and (n+ l ) th  time points is expressed by Ar. Applying the 
procedures to equations (47), (52), (61) and (62), the following two step scheme can be 
obtained denoting the values at the nth time point by superscript n. 
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Nearshore current 

First step: 

where e is the parameter which represents the ratio of the lumped coefficient to the 
unlumped coefficient. This parameter e is referred to as the selective lumping parameter. 

SOLUTION PROCEDURES 

As was shown in the previous section, the basic equations of nearshore current can be 
divided into three parts, i.e. equations of wave direction, ’wave height and current flow. The 
most important procedure for the numerical integration in time is the selection of the time 
interval, which completely differs in each analysis of wave direction, wave height or current 
flow. It is almost impossible and also disadvantageous to solve parallelly all equations of 
wave and current. This is also due to the fact that the time scales of the phenomena are 
wholely different from each other. 
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The solution procedures used in the present computation are illustrated in Figure 2. First, 
the wave direction is solved by the kinematical conservation equation of wavenumber. 
Equations (63) and (64) are used, specifying the incidental wave direction on the oceanside 
boundary. As the initial condition, the wave directions at all nodal points in the whole field 
are assumed t o  be zero. Secondly, using the resulting wave direction, the wave height is 
derived from the conservation equation o f  wave energy. Equations (65) and (66) are 
employed, postulating the incidental wave height on the oceanside boundary. As the initial 
condition, the wave heights at all nodal points in the whole field are assumed to be zero. 
Thirdly, from the wave direction and wave height, the radiation stress which is the driving 
force of the current flow, can be obtained. The values of the radiation stress are computed at 
each nodal point using the values of wave direction and wave height at each nodal point. 
Finally, the nearshore current can be computed by the equation of momentum and the 
equation of continuity including the radiation stress. Equations (67)-(70) are used with 
appropriate boundary conditions for velocity, surface flux and water elevation. As the initial 
conditions, all nodal values of velocity and water elevation are supposed to be zero. The 
computation continues until the steady state has been reached. Because the equation system 
is non-linear, it is necessary to use iterative computation. Iteration has been performed 
independently for each stage of wave direction, wave height and current flow. First, the 
steady state of the wave direction is computed assuming the current velocity field. Secondly, 
the steady state o f  wave height is computed assuming wave direction and current flow. Then, 
the steady state of current flow is derived from the resulting wave direction and wave height. 
The iterative cycle is continued until convergence is obtained with respect to  the current flow 
computed. For selective lumping parameter, e = 0.8 was determined by several numerical 
experiments and used for all computations in this paper. All the computations for the flow 
have been carried out ignoring the radiation stress outside the surf zone, because the effect 
seems insignificant. 

I-r' Bottom topogrrphy rl Incdent wave period 

1 k c u l a t i o n  of neorshore current 1 
L o  & Convergence 

Figure 2. Flow chart 
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NUMERICAL TESTS 

To show the validity of the present finite element method, several numerical computations 
have been carried out, of which results are compared with analytical solutions. For this 
purpose, numerical results are obtained by ignoring the coupling effect of current velocity. 
The first example is the computation of the refraction of waves compared with the Snell’s 
law. Figure 3 shows the finite element idealizations and water depth employed in the 
comparative computation. The idealizations are named meshes A, B and C, respectively, as 

200 m 

mesh A 

mesh B 

mesh C 

Figure 3. Finite element idealizations and water depth 

the meshes are refined. The total numbers of finite elements and nodal points are listed in 
Table I. The period of the incident wave is taken as To = 10 s. Figure 4 illustrates the 
computed wave angle compared with Snell’s law. The computations have been carried out 
imposing various incident wave angles, using mesh B. The independent square marks in the 
Figure represent the computed wave angles, whereas the solid lines show those of the Snell’s 
law. The wave angles computed by the present finite element method are well in agreement 
with those by the analytical methods. Figure 5 is the illustration of the comparison of the 

Table I 

Total nodes Total elements 

mesh A 63 80 
mesh B 205 320 
mesh C 729 1280 



wave angle (deg.J 

A 
0 1  2 6  5 1  

water depth ( m )  

0 100 200 
1 J 

distance from the coast (m) 

Figure 4. Computed wave angles using various incident waves 

wave angle beg.) 
- analytical solution 

mech A 
A mech 0 

L I 
0 1  2 6  5 1  

water depth (m) 

I 1 
0 50 100 150 200 

distance from the coast ( m  1 

Figure 5. Computed wave angles based on various finite element idealizations 
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2 0 -  

1 5 -  

1 0  

0 5  

0 0  

computed wave angles using various mesh refinements. This Figure shows that mesh B is 
sufficient for the computation of wave angle. 

The second example is the comparison of wave height. Using the resulting wave angles, 
the wave height is computed, based on the various finite element refinements. The computed 
wave heights are plotted in Figure 6 with the analytical solution (solid line). Both numerical 
and analytical solutions are extremely well in agreement. In this example, mesh B is also 
sufficient to  obtain reasonable numerical results. 

The third example is the computation of the current flow in an idealized basin with an 
inclined coastline. Figure 7 shows the schematical illustration of the water tank used by 
Mizuguchi et al. to model experimentally the nearshore current f l ~ w . ' ~ , ' ~  The finite element 
idealization of the tank and the assumed water depth are represented in Figure 8. The total 
numbers of elements and nodes are 3369 and 1760. The computed wave angle and 
wavenumber are shown in Figure 9, in which inclination of arrow corresponds to  wave angle, 
whereas length of arrow is wavenumber. At the offshore boundary, the incident wave angle 
is imposed to be perpendicular to the boundary, i.e. 8, = 270". The wave period is assumed 
to be To = 0-71 s. considering experiments. Figure 10 illustrates the computed wave height 
postulating that the incident wave height at the offshore boundary is Ho = 3.8 cm. The solid 
line shows the equiwave-height line. Both numerical results in Figures 9 and 10 were 
computed ignoring the coupling effect of current velocity. The current flow was obtained 
using the computed wave angle and height. On the coastal boundary, both components of 
velocity are assumed to be zero. Normal velocity to the boundary is taken as zero on the 
other three surrounding boundaries. For turbulent viscosity anf friction coefficient the values 
Al = ph, p = 0-2 and C, = 0-02 are employed. The computed current flow is shown in Figure 
11. Comparison of the computed velocity with the analytical solution of Longuet-Higgins' is 
shown in Figure 12. The analytical solution is obtained by assuming a variable viscosity, 
which induces the discrepancy at the offshore coastal water. Considering this, the numerical 
and analytical solutions show reasonably good agreement. 

- analytical solution 
a mech A 
A mech B 
o mech C 

- 

- 

I 1 

I 1 

0 50 100 150 200 
distance from the coast [rn) 

Figure 6. Computed wave heights based on various finite element idealizations 
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(unit :cm 1 
Figure 7. Outline of water tank 

COMPARISON WITH EXPERIMENT 

The numerical results by the present finite element method are compared with the experi- 
mental results of Mizuguchi et a1.15s16 The current flow shown in Figure 11 is employed for 
the computations of wave direction and wave height in the second cycle. The computed wave 
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Number of nodes 1760 
Number of elements 3369 

Figure 8. Finite element idealization of water tank 

WAVE DIRECTION 

incident wave angle 
incident wave period T = 0.71sec 

8 = 270' - : 20/m 

I 

Figure 9. Computed wave direction without coupling of current 
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I unit crn I 

WAVE HEIGHT DISTRIBUTION 
incident wuve height H = 3.8cm 
incident wave angle 
incident wave period T = 0 7lsec 

0 = 270' 

0 0 0  n 
-.-.o 0 

Figure 10. Computed wave height without coupling of current 

CURRENT FLOW 

incident wave height H = 3 Bcm 
incident wave angle 
incident wave period T = 0.7lsec 

0 I 270' 

Figure 11. Computed nearshore current 
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present method 
amlytical solution 

( by Longuet - Higgins ) 

/ 
, / I 1  I I I I I  

0 0 5  1 0  1 5  
x / x b  

V longshore current velocity 

V m a ~  maximum longshore current velooty 

X distonce from still voter shoreline 

Xb breaking point 

Figure 12. Comparison between numerical and analytical current velocities 

angle and wavenumber are represented in Figure 13. Comparing Figure 13 with Figure 9, 
the indication that wave angle is affected by the current can be seen. Figure 14 is the 
representation of the computed wave height. The distribution of the wave height is affected 
by the current flow. In Figure 15, the computed current flow is represented. In Figure 16, 
comparison of longshore velocity with experiment is shown. White circles represent the 
experimental data, whereas black circles are the compuated data. Both observed and 
computed velocities are non-dimensionalized by the maximum values obtained. Comparison 
is carried out on the line y = 135 cm. If the computed results are shifted 10 cm to the 
shoreline side, both results are completely coincident. This is because the set up of the water 
elevation at the coastline was neglected in the computation. Figure 17 illustrates the 
comparisons of water elevation and wave height. Ignoring the set up at the coastline, both 
numerical and observed results are in extremely good agreement. 

APPLICATION TO FUJISAWA COAST 

The present finite element method is applied to the analysis of nearshore current on the 
Fujisawa coast in Japan. Along the coast, there is a natural sand beach, and no artificial 
structure is built around the area analysed. The local government has recently performed the 
observation of nearshore current. Figure 18 represents the finite element idealization for 
wave and current computations. The total numbers of finite elements and nodal points are 
2928 and 1545, respectively. On the coastline, both components of velocity are specified as 
zero. On offshore and both side boundaries, normal velocity is assumed to be zero. The 
incident wave is imposed on the offshore boundary as wave angle 8,,=27O0, wave height 
Ho = 2 m and wave period To = 10 s. Figure 19 is the illustration of water depth and observed 
rip current zones. The contour lines represents the water depth, and the shaded zone shows 
the area in which the rip current is observed. The computation continued to the second 
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WAVE DIRECTION 
incident wove height H = 3 8cm 
incident w v e  angle 
incident wove period T = 0 7lsec 

8 = 270' -4Fy - : 20/m 

Figure 13. Computed wave direction coupling with current velocity 

WAVE HEIGHT DISTRIBUTION 
incident wave height H 3 Bcm 
incident wave angle 0 = 270' 

n 
incident wave period T = 0.7lsec I unlt cm 1 

.-N 0 

Figure 14. Computed wave height coupling with current velocity 
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CURRENT FLOW 

incident wave height H = 3 8cm 
incident wave angle 
incident wave period T = 0.7lsec 
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Figure 19. Water depth and observed rip current zone 

iteration cycle. Namely, the computed wave direction and wave height are obtained by 
considering the coupling effect of current velocity. Comparing the computed velocity in the 
third iteration with that in the second iteration, it can be seen that the second iteration is 
sufficient to obtain the converged results. The wave angle and wave height are shown in 
Figures 20 and 21. The current flow is illustrated in Figure 22. Comparing the rip zones 
computed with those observed as in Figure 19, the locations of the zones are shown to be 
coincident. Figures 23 and 24 are the comparison of nearshore current according to the 
various incident wave directions and wave heights, respectively. In those Figures, it is seen 
that the nearshore current is extremely sensitive to the distribution of wave direction and 
wave height. For these computations of the current, eddy viscosity Al = 1.0 m2/s and friction 
coefficient C, = 0.02 are employed. The time increment At is chosen to be 2.25 s. 

CONCLUSION 

The selective lumping two step explicit finite element method has been presented for the 
analysis of the transient nearshore current in a coastal sea. The present method is charac- 
terized by the following items. The first point is that the same solution procedures are used 
to determine the characteristics of wave and current. For this purpose, all basic equations are 
transformed into the form of the first order time dependent differential equation system. The 
second point is that a linear interpolation function based on a three node triangular finite 
element method is used for all field variables of wave direction, wave height, current velocity 
and water elevation. This allows use of the selective lumping two step explicit scheme for 
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Figure 21. Computed wave height at Fujisdwa coast 
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Figure 22. Computed nearshore current at Fujisawa coast with incident wave angle 8, = 270" and wave height 
H,, = 2.0 m 

numerical integration in time, which is the third point. Finally, the computed results show 
extremely good agreement with analytical and experimental results. The water set up at the 
coastline which is ignored in this analysis ought to be considered. The computed flow 
patterns on the Fujisawa coast are in good agreement with the patterns observed. Thus, it is 
concluded that the present finite element method is extremely useful for the analysis of the 
nearshore current. The present procedures for wave analysis can be adapted for any natural 
coastal water. However, this method is not useful for the analysis of a water area including 
breakwaters such as harbours, ports, etc. because wave reflection and diffraction are not 
considered. 
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CURRENT FLOW 
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